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Motivation

H ouse

90

101

Question
When should you leave home, and which route should you
take, if you need to drive to an important appointment, such as
catching a flight or a job interview?
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Motivation

Perhaps using driving direction provided by Google, Yahoo
or your in-vehicle navigation system?

Do you really trust their estimation of travel time when you
don’t want to miss that appointment?
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Motivation
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(a) Interstate 94/90 from Chicago (Ohio St.) 
     to Ohare International Airport (source: Google Map)

(b) Travel Time Distribution for that corridor 
      during morning rush hour (6-10 AM)

48.3 minutes

Cumulative probability = 90%

Travel times vary from as low as about 15 minutes to as
long as 80 minutes in the morning peak period (6 - 10 AM).

If a traveler wishes to capture the flight on time with a 90%
chance, 48 minutes have to be budgeted for travel, over
50% more than the mean travel time (31 minutes).
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Considering travel reliability is important...

Travelers need to incorporate reliability into route choice so
that they can better use their time;

Shippers and freight carriers need predictable travel times
to fulfill on-time deliveries in order to remain competitive;

The ability to arrive on-time with high reliability is
imperative to emergency responders;

Planning agency need to anticipate travelers’ response to
reliability in their planning process;

...

Reliable a priori shortest path problem (RASP) often arises
from these applications
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Problem statement

Problem
Assume: analytical or empirical probabilistic distributions of
travel times on all roads are known;
Find: optimal a priori paths that require smallest time budget to
ensure arriving on-time or earlier for a desired likelihood.
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Route 1

Route 2

However, risk-averse travelers would always 
prefer route 1 to 2.
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Route 1 Route 2

buffer time for 90% chance of on-time arrival

For 90% probability,  route 2 is preferable
For 50% probability, route 1 is preferable 
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Stochastic routing problem

Minimize expectation

The basic problem is trivial, but complexity is introduced when
the following issues are considered.

Time-dependent networks: Hall (1986a), Fu (2001),
Miller-hooks (2001), Fu & Rilett 1998, Miller-hooks &
Mahmassani 2000.

Correlated distributions: Waller & Ziliaskopoulos (2002),
Fan et al. (2005b)

Recourse: Croucher (1978), Andreatta & Romeo
(1988),Polychronopoulos & Tsitsiklis (1996), Waller &
Ziliaskopoulos (2002), Provan (2003), Gao & Chabini
(2006).
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Literature (cont.)

Maximize reliability

Maximize the probability of realizing a travel time equal to
or less than a given threshold: Frank (1969), Mirchandani
(1976), Fan et al. (2005a), Nie and Wu (2009a,b,c).

Maximize the probability of being the shortest: Sigal et al.
(1980)

Least possible travel time: Miller-hooks & Mahmassani
(1998)

Maximize expected utility: Loui (1983),Eiger et al. (1985),
Murthy & Sarkar (1998)

Minimize the maximum travel time: Yu & Yang (1998),
Montemani & Gambardella (2004)
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Setting

Notation
Consider a directed network G(N ,A,P) consisting a set of
nodes N (|N | = n), a set of links A (|A| = m), a probability
distribution P describing the statistics of the link traversal
times (or costs).

The traversal times of link ij (denoted as cij ) is an
independent random variable, following a given distribution
pij(·).
Travel time on path k rs (which connects node r and the
destination s) is denoted as πrs

k and all paths that connect r
and s forms a set of K rs.

The destination of routing is denoted as s.
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Define optimality

Definition (b-reliable path)

A path krs is said b-reliable if and only if
urs

k (b) ≥ urs
l (b),∀l rs ∈ K rs, where urs

k = P(πrs
k ≤ b) denotes the

cumulative distribution function (CDF) of πrs
k .

Problem statement
A b-reliable path is the path that is most reliable with respect to
b. Our goal is to find such reliable paths for every b.
However, dynamic programming is not directly applicable
because

Theorem
Subpaths of a b-reliable path may not be b-reliable.
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First-order stochastic dominance (FSD)

Definition (FSD-admissible path)

A path krs ∈ K rs is FSD-admissible if and only if ∃ no path
l rs ∈ K rs such that 1) urs

l (b) ≥ urs
k (b),∀b, and 2)∃ at least one b

such that urs
l (b) > urs

k (b).
FSD-admissible paths can be understood as non-dominant
paths.

u

b

1

2

Path 1 is  FSD-admissible
Path 2 is not. It is domiated by 1
Path 1 forms the pareto frontier

u

b

1

2

Both Path 1 and 2 are admissible
They together form the pareto frontier

b

1

2

All three paths are FSD-admissible
Path 3 does not contribute to the frontier,
but it is not dominated by either 1 or 2.

3
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Two results

Theorem

Subpaths of any FSD-admissible path must be FSD-admissible.
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Two results

Theorem

Subpaths of any FSD-admissible path must be FSD-admissible.

We can still search FSD-admissible paths using dynamic
programming

We have to deal with a set of such paths, which could grow
exponentially with problem size.

Theorem

A FSD-admissible path is acyclic.

We can ignore paths with cycles

This fact may be used to improve computational efficiency.
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Solution procedure

Label-correcting

Step 0: Initialization. Add a path starting and ending at the
destination s into candidate list Q.

Step 1: If Q is not empty, take a path k js from Q, go to step
2; otherwise terminate.

Step 2: For each path k is = ij � kjs, if it is FSD admissible,
add it into Q, and remove all existing paths dominated by
this kis. Go back to Step 1.

Theorem (Finite convergence)

The above procedure terminates after a finite number of steps
and yields a set of FSD-admissble paths for each node i.
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Complexity

Bad news
The algorithm is non-deterministic polynomial, because the
number of FSD-admissible paths may grow exponentially with
the network size. The algorithm runs in order of
O(mn2n−1L + mnnL2).
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Complexity

Bad news
The algorithm is non-deterministic polynomial, because the
number of FSD-admissible paths may grow exponentially with
the network size. The algorithm runs in order of
O(mn2n−1L + mnnL2).

Good news

|K is| is much smaller than nn−1 for sparse networks
commonly seen in transportation applications.

The expected number of FSD-admissible paths is bounded
roughly by log(|K is|) if the number of discrete time points L
is 2.
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Complexity (cont.)

What if L > 2?
Get a theoretical bound is more difficult. However, through
experiments we conjecture

The number of FSD-admissible paths increases
exponentially with L in general, and

Due to the monotonicity of CDF, it seems to be bounded by
L log(|K is|).

If the second conjecture is correct, we can push the complexity
to O(mn2L3(log(n))2). This is a pseudo-polynomial bound!
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Implementation issues

Extreme-dominance approximation

Ignore FSD-admissible paths that do not contribute to the
frontier

The complexity of the solution procedure is now in the
order of O(mnL + mL3) (� O(mL3)).

This approximation does not always yield correct
Pareto-frontiers.

Cycle avoidance

A path with cycles cannot be FSD-admissible.

It is thus useful to prevent paths with cycles from entering
the current path set. The cost of such operations is well
paid off.
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Implementation issues (cont.)

Convolution integral

The single most time-consuming component in the
algorithm.

Adaptive discretization schemes. The number of support
points is bounded from the above, and is allowed to vary
according to the shape of probability density function. The
adaptive scheme achieves a satisfactory balance of
efficiency and accuracy (Nie et al. 2010).

Fast Fourier Transformation (FFT) can be used to further
expedite the operation. It will reduce the quadratic
complexity (L2) to a logarithm one (L log L). However, FFT
is is effective only when L is relatively large (> 10, 000).
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Chicago metropolitan region

The third largest metropolitan area in the US and one of
the most congested cities.

The travel time in the Chicago area is more unreliable than
any other major metropolitan areas in the US (planning
index = 2.07, Mobility Report 2007).

Chicago has archived a rich set of traffic data in both public
and private sectors

Data
GCM (Gary-Chicago-Milwaukee corridor) traveler information
system (www.gcmtravel.com) provide traffic data collected from
loop detectors and electronic toll transponders (known as
I-PASS).
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An overview of Chicago network

Filled   circles:  Loop detector
Unfilled circles:  Toll plaza 

Airport

Chicago

Northshore

South suburbas
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Data on freeway and toll roads

Loop detectors record speed, occupancy and flow rate
approximately every 5 minutes

Travel times on toll roads between two I-PASS toll booths
are obtained from in-vehicle transponders and aggregated
every 5 minutes.

About 825 loop detectors and 174 I-PASS detectors from
GCM database are used.

The loop detector data collected from 2004 10/10 to 2008
10/11, and the I-PASS detector data from 2004 10/9 to
2008 7/3.

In total, 765 links are “covered" by either I-PASS detector,
loop detector, or both.
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Data coverage

Thick Blue (Loop detector)
Thin Red (I-PASS detector)
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Construct distributions for covered links

Procedure
Step 1 Find La = min{τa(t),∀t ∈ Λ}, Ua =

min{10la/v0
a , max{τa(t),∀t}}, where Λ is a set of

valid time intervals in the observation period, and
v0

a is free flow speed (or speed limit) on link a.

Step 2 Divide [La, Ua] into M intervals, and let
δa = (Ua − La)/M. Find the set Dm = {τa(t)|∀t ∈
Λ, (m − 1)δa ≤ τa(t) < mδ},∀m = 1, ...., M

Step 3 Obtain the probability mass for each interval m
using Pm = |Dm|

|Λ| .

The data are disaggregated into 150 different groups based on
three factors: time of day (4 + 1), day of week (5 + 1) and
season (4 + 1). Each covered link has 150 different
distributions.
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Sample distribution for different time of day
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Data on arterial streets

Two step estimation process

The travel time distributions on arterial streets have to be
estimated indirectly because no observations are available.

Select an appropriate functional form: travel time on
freeway and arterial is known to closely follow a Gamma
distribution

Estimate mean and variance

The probability density function of a Gamma distribution is

f (x) =
1

θκΓ(κ)
(x − μ)κ−1e−(x−μ)/θ ; x ≥ μ, θ, κ ≥ 0 (1)

where θ is the scale parameter; κ is the shape parameter; μ is
the location parameter; and Γ(·) is the Gamma function.
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Estimate parameters in the Gamma function

If we know mean (denoted as u), variance (denoted as σ2) and
μ, then κ and θ can be obtained by

θ =
σ2

u − μ
, κ = (

u − μ

σ
)2 (2)

Postulation
The mean and variance of travel times on a link depends on its
free flow travel time τ0 and the travel delay ρ = τ − τ 0; the
location parameter μ depends only on τ0.

Since ρ can be obtained from travel demand models, one can
calibrate the above relationship using freeway data, then use
the model to estimate mean and variance on arterial streets.
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Linear regression

Linear regression model reads

u = a1τ
0 + b1ρ + c1 (3)

σ = a2τ
0 + b2ρ + c2 (4)

μ = aτ0 + b (5)

where a, b, a1, b1, c1, a2, b2 and c2 are coefficients to be
estimated.

ρ and τ 0 for all links (freeway and arterial) from a travel
planning model prepared by Chicago Metropolitan Agency
for Planning (CMAP).

u, σ and μ are known on freeways and toll road, but
unknown on arterial streets.
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Linear regression results

time-of-day Variance Model
periods a1 b1 c1 R2

AM PEAK 0.309 0.870 0.580 0.444
PM PEAK 0.368 0.685 2.967 0.400
MIDDAY 0.283 1.076 2.040 0.346

OFF PEAK 0.178 0 -1.031 0.516
time-of-day Mean Model

periods a2 b2 c2 R2

AM PEAK 1.127 0.546 -2.056 0.910
PM PEAK 1.143 0.563 0.336 0.872
MIDDAY 1.100 0.630 -1.145 0.889

OFF PEAK 1.043 0.0000 -5.854 0.907
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time-of-day Location Model
periods a b R2

AM PEAK 0.843 -4.106 0.958
PM PEAK 0.860 -3.533 0.964
MIDDAY 0.857 -3.608 0.956

OFF PEAK 0.831 -5.257 0.937

29/44



Background The RASP problem Case study Numerical results Conclusions

Downtown Chicago - the ORD Airport (Mid-of-Day)

(a) From downtown to ORD (b) From ORD to downtown

For mid-of-day, FSD-admissible paths mostly use the
freeway, as often suggested by Google Map or Yahoo
maps.

The differences among the paths are minor.
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Downtown Chicago - the ORD Airport (Morning peak)

(c) from downtown to ORD (d) from ORD to downtown

Drivers should stay away from the freeway if they wish to
arrive on-time with high probability (95%).
To arrive the airport with 95% probability, the reliable path
requires a time budget of 33 minuets 57 seconds while
using the freeway costs 37 minutes and 18 seconds to
achieve the same reliability.
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Downtown Chicago - the ORD Airport (Evening peak)

(e) 95% on-time arrival probability (f) 50% on-time arrival probability

Motorists from the airport to the city should use arterial
streets until they pass the merge of the two freeways.
For 95% on-time arrival probability, the left path can save
about 5 minutes comparing the right path.
When 50% on-time arrival probability is required, the right
path is slightly better (about 0.25 minutes).
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Distributions on FSD-admissible paths
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Northshore - South suburbs (morning peak)

For higher
reliability motorists
need to use
various arterial
streets until they
are close to
downtown
Chicago, and then
switch to the major
freeway.
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Northshore - South suburbs (morning peak)

For lower reliability
requirement,
drivers can use
another
expressway known
as Lake shore Dr.
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Northshore - South suburbs (morning peak)

For the mid-of-day
and the evening
peak periods, Lake
Shore Dr. is more
reliable.

However, Lake
shore Dr. is always
preferred when
traveling from
South to North.
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Computational performance

Weekdays Weekends
AM Mid PM AM Mid PM

Downtown to ORD
CPU time 29.58 18.69 16.58 12.25 19.14 8.50
# paths 7 5 4 1 5 1

ORD to downtown
CPU time 29.58 23.70 14.58 15.69 15.36 28.02
# paths 6 2 2 1 2 4

Northshore to south suburbs
CPU time 65.88 74.39 20.42 15.52 46.53 33.74
# paths 7 10 2 2 1 4

South suburbs to northshore
CPU time 60.83 39.00 33.74 14.19 36.25 12.08
# paths 10 6 6 1 3 1
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Computational performance (a sensitivity analysis)
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Figure: Impacts of variances on arterial streets on computational
performance.
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Summary

General dynamic programming is used to formulate the
reliable shortest path problem. Two theoretical results are
essential:

Applicability of Bellman’s Principle of Optimality
Acyclicity of admissible paths

Reliable shortest path problem is NP-hard, but seems
tractable when solved appropriately, even for very large
problems

Reliable route guidance does make a difference, and could
generate substantial benefits in terms of time savings.

Data availability remains a concern, particularly on arterial
streets.

39/44



Background The RASP problem Case study Numerical results Conclusions

Possible extensions

Consider higher-order stochastic dominance
Capture heterogenous risk-taking behavior
Reduce the number of non-dominant paths
Optimization atop of the non-dominant paths

Application to traffic assignment and network design
problems

More efficient approximation algorithms

Address more complete correlation structure

Consider emerging data sources - such as GPS data, cell
phone tracking, etc.
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Resources

A software tool, called Chicago Travel Reliability, or CTR,
can be downloaded at
http://translab.civil.northwestern.edu/nutrend/.

We are currently conducting a survey to collect motorists’
opinion about reliable routing. You could help us by
providing your inputs (the survey can be accessed at the
above URL).
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Thank you!
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